Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Clin Transl Immunology ; 12(2): e1438, 2023.
Article in English | MEDLINE | ID: mdl-36815946

ABSTRACT

Here, we offer a roadmap for what might be studied next in understanding how EBV triggers MS. We focus on two areas: The first area concerns the molecular mechanisms underlying how clonal antibody in the CSF emanates in widespread molecular mimicry to key antigens in the nervous system including GlialCAM, a protein associated with chloride channels. A second and equally high priority in the roadmap concerns various therapeutic approaches that are related to blocking the mechanisms whereby EBV triggers MS. Therapies deserving of attention include clinical trials with antivirals and the development of 'inverse' vaccines based on nucleic acid technologies to control or to eradicate the consequences of EBV infection. High enthusiasm is given to continuation of ongoing clinical trials of cellular adoptive therapy to attack EBV-infected cells. Clinical trials of vaccines to EBV are another area deserving attention. These suggested topics involving research on mechanism, and the design, implementation and performance of well-designed trials are not intended to be an exhaustive list. We have splendid tools available to our community of medical scientists to tackle how EBV triggers MS and then to perhaps change the world with new therapies to potentially eradicate MS, as we have done with nearly complete success for poliomyelitis.

2.
Proc Natl Acad Sci U S A ; 119(10): e2117034119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35235454

ABSTRACT

Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease of the central nervous system (CNS) with a high socioeconomic relevance. The pathophysiology of MS, which is both complex and incompletely understood, is believed to be influenced by various environmental determinants, including diet. Since the 1990s, a correlation between the consumption of bovine milk products and MS prevalence has been debated. Here, we show that C57BL/6 mice immunized with bovine casein developed severe spinal cord pathology, in particular, demyelination, which was associated with the deposition of immunoglobulin G. Furthermore, we observed binding of serum from casein-immunized mice to mouse oligodendrocytes in CNS tissue sections and in culture where casein-specific antibodies induced complement-dependent pathology. We subsequently identified myelin-associated glycoprotein (MAG) as a cross-reactive antigenic target. The results obtained from the mouse model were complemented by clinical data showing that serum samples from patients with MS contained significantly higher B cell and antibody reactivity to bovine casein than those from patients with other neurologic diseases. This reactivity correlated with the B cell response to a mixture of CNS antigens and could again be attributed to MAG reactivity. While we acknowledge disease heterogeneity among individuals with MS, we believe that consumption of cow's milk in a subset of patients with MS who have experienced a previous loss of tolerance to bovine casein may aggravate the disease. Our data suggest that patients with antibodies to bovine casein might benefit from restricting dairy products from their diet.


Subject(s)
Antibodies/immunology , Caseins/immunology , Cross Reactions , Demyelinating Diseases/immunology , Multiple Sclerosis/immunology , Myelin-Associated Glycoprotein/immunology , Animals , Antibody Specificity , Humans , Mice , Mice, Inbred C57BL , Milk/immunology
3.
Nature ; 603(7900): 321-327, 2022 03.
Article in English | MEDLINE | ID: mdl-35073561

ABSTRACT

Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.


Subject(s)
Epstein-Barr Virus Infections , Multiple Sclerosis , Animals , B-Lymphocytes , Cell Adhesion Molecules, Neuron-Glia , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Humans , Mice , Nerve Tissue Proteins
4.
Elife ; 102021 05 18.
Article in English | MEDLINE | ID: mdl-34003116

ABSTRACT

Interleukin-2 is a pleiotropic cytokine that mediates both pro- and anti-inflammatory functions. Immune cells naturally differ in their sensitivity to IL-2 due to cell type and activation state-dependent expression of receptors and signaling pathway components. To probe differences in IL-2 signaling across cell types, we used structure-based design to create and profile a series of IL-2 variants with the capacity to titrate maximum signal strength in fine increments. One of these partial agonists, IL-2-REH, specifically expanded Foxp3+ regulatory T cells with reduced activity on CD8+ T cells due to cell type-intrinsic differences in IL-2 signaling. IL-2-REH elicited cell type-dependent differences in gene expression and provided mixed therapeutic results: showing benefit in the in vivo mouse dextran sulfate sodium (DSS) model of colitis, but no therapeutic efficacy in a transfer colitis model. Our findings show that cytokine partial agonists can be used to calibrate intrinsic differences in response thresholds across responding cell types to narrow pleiotropic actions, which may be generalizable to other cytokine and growth factor systems.


Subject(s)
Interleukin-2/agonists , Interleukin-2/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Colitis/chemically induced , Cytokines/metabolism , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL
5.
Proc Natl Acad Sci U S A ; 117(35): 21512-21518, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817492

ABSTRACT

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), with characteristic inflammatory lesions and demyelination. The clinical benefit of cell-depleting therapies targeting CD20 has emphasized the role of B cells and autoantibodies in MS pathogenesis. We previously introduced an enzyme-linked immunospot spot (ELISpot)-based assay to measure CNS antigen-specific B cells in the blood of MS patients and demonstrated its usefulness as a predictive biomarker for disease activity in measuring the successful outcome of disease-modifying therapies (DMTs). Here we used a planar protein array to investigate CNS-reactive antibodies in the serum of MS patients as well as in B cell culture supernatants after polyclonal stimulation. Anti-CNS antibody reactivity was evident in the sera of the MS cohort, and the antibodies bound a heterogeneous set of molecules, including myelin, axonal cytoskeleton, and ion channel antigens, in individual patients. Immunoglobulin reactivity in supernatants of stimulated B cells was directed against a broad range of CNS antigens. A group of MS patients with a highly active B cell component was identified by the ELISpot assay. Those antibody reactivities remained stable over time. These assays with protein arrays identify MS patients with a highly active B cell population with antibodies directed against a swathe of CNS proteins.


Subject(s)
Autoantibodies/immunology , B-Lymphocytes/immunology , Multiple Sclerosis/immunology , Adult , Antigens , Autoimmune Diseases/pathology , Central Nervous System/immunology , Central Nervous System/metabolism , Cohort Studies , Female , Humans , Male , Middle Aged , Myelin Sheath/metabolism
6.
Curr Opin Immunol ; 61: 46-53, 2019 12.
Article in English | MEDLINE | ID: mdl-31476445

ABSTRACT

Trials of antigen-specific tolerance have been undertaken in the clinic for over fifty years and the results of these antigen-specific clinical trials are described in this review. Antigen-specific tolerization of the immune system in protein replacement therapy for hemophilia A is an accepted treatment. Clinical trials are ongoing for autoimmune conditions such as type 1 diabetes, multiple sclerosis, neuromyelitis optica, and rheumatoid arthritis with various antigen-specific strategies. Trials for tolerization in celiac disease aim for antigen specific tolerance to gluten, an environmental trigger, which may then halt the progression to autoimmunity targeting a self-antigen, tissue transglutaminase. Although many promising approaches have been demonstrated in pre-clinical models, this review will focus primarily on clinical trials of antigen-specific tolerance that have been taken to the clinic and with initial results reported in the peer reviewed literature. A separate article on approaches with CAR-T cells appears in this volume.


Subject(s)
Autoantigens/immunology , Autoimmunity , Epitopes/immunology , Genetic Therapy , Immune Tolerance , Animals , Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/therapy , Enzyme Replacement Therapy , Genetic Therapy/methods , Hemophilia A/genetics , Hemophilia A/therapy , Humans , Multiple Sclerosis/etiology , Multiple Sclerosis/metabolism , Multiple Sclerosis/therapy , Neuromyelitis Optica/etiology , Neuromyelitis Optica/metabolism , Neuromyelitis Optica/therapy
7.
Proc Natl Acad Sci U S A ; 115(39): E9182-E9191, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30181272

ABSTRACT

In gene therapy for Duchenne muscular dystrophy there are two potential immunological obstacles. An individual with Duchenne muscular dystrophy has a genetic mutation in dystrophin, and therefore the wild-type protein is "foreign," and thus potentially immunogenic. The adeno-associated virus serotype-6 (AAV6) vector for delivery of dystrophin is a viral-derived vector with its own inherent immunogenicity. We have developed a technology where an engineered plasmid DNA is delivered to reduce autoimmunity. We have taken this approach into humans, tolerizing to myelin proteins in multiple sclerosis and to proinsulin in type 1 diabetes. Here, we extend this technology to a model of gene therapy to reduce the immunogenicity of the AAV vector and of the wild-type protein product that is missing in the genetic disease. Following gene therapy with systemic administration of recombinant AAV6-microdystrophin to mdx/mTRG2 mice, we demonstrated the development of antibodies targeting dystrophin and AAV6 capsid in control mice. Treatment with the engineered DNA construct encoding microdystrophin markedly reduced antibody responses to dystrophin and to AAV6. Muscle force in the treated mice was also improved compared with control mice. These data highlight the potential benefits of administration of an engineered DNA plasmid encoding the delivered protein to overcome critical barriers in gene therapy to achieve optimal functional gene expression.


Subject(s)
DNA , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors , Muscle Strength/genetics , Muscular Dystrophy, Duchenne/therapy , Plasmids , Animals , DNA/genetics , DNA/pharmacokinetics , Disease Models, Animal , Dystrophin/genetics , Dystrophin/immunology , Dystrophin/metabolism , Genetic Vectors/pharmacology , Male , Mice , Mice, Inbred mdx , Muscle Strength/immunology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/immunology , Muscular Dystrophy, Duchenne/metabolism , Plasmids/genetics , Plasmids/pharmacology
8.
Nat Neurosci ; 21(4): 541-551, 2018 04.
Article in English | MEDLINE | ID: mdl-29507414

ABSTRACT

Neuroinflammation and neurodegeneration may represent two poles of brain pathology. Brain myeloid cells, particularly microglia, play key roles in these conditions. We employed single-cell mass cytometry (CyTOF) to compare myeloid cell populations in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, the R6/2 model of Huntington's disease (HD) and the mutant superoxide dismutase 1 (mSOD1) model of amyotrophic lateral sclerosis (ALS). We identified three myeloid cell populations exclusive to the CNS and present in each disease model. Blood-derived monocytes comprised five populations and migrated to the brain in EAE, but not in HD and ALS models. Single-cell analysis resolved differences in signaling and cytokine production within similar myeloid populations in EAE compared to HD and ALS models. Moreover, these analyses highlighted α5 integrin on myeloid cells as a potential therapeutic target for neuroinflammation. Together, these findings illustrate how neuropathology may differ between inflammatory and degenerative brain disease.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Brain/pathology , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Huntington Disease/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Myeloid Cells/pathology , Animals , CREB-Binding Protein/metabolism , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Disease Models, Animal , Huntingtin Protein/genetics , Huntington Disease/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Monocytes , Mutation/genetics , Myeloid Cells/metabolism , Single-Cell Analysis/methods , Superoxide Dismutase-1/genetics
9.
J Vis Exp ; (126)2017 08 21.
Article in English | MEDLINE | ID: mdl-28872108

ABSTRACT

While it is recognized that aquaporin-4 (AQP4)-specific T cells and antibodies participate in the pathogenesis of neuromyelitis optica (NMO), a human central nervous system (CNS) autoimmune demyelinating disease, creation of an AQP4-targeted model with both clinical and histologic manifestations of CNS autoimmunity has proven challenging. Immunization of wild-type (WT) mice with AQP4 peptides elicited T cell proliferation, although those T cells could not transfer disease to naïve recipient mice. Recently, two novel AQP4 T cell epitopes, peptide (p) 135-153 and p201-220, were identified when studying immune responses to AQP4 in AQP4-deficient (AQP4-/-) mice, suggesting T cell reactivity to these epitopes is normally controlled by thymic negative selection. AQP4-/- Th17 polarized T cells primed to either p135-153 or p201-220 induced paralysis in recipient WT mice, that was associated with predominantly leptomeningeal inflammation of the spinal cord and optic nerves. Inflammation surrounding optic nerves and involvement of the inner retinal layers (IRL) were manifested by changes in serial optical coherence tomography (OCT). Here, we illustrate the approaches used to create this new in vivo model of AQP4-targeted CNS autoimmunity (ATCA), which can now be employed to study mechanisms that permit development of pathogenic AQP4-specific T cells and how they may cooperate with B cells in NMO pathogenesis.


Subject(s)
Aquaporin 4/metabolism , Autoantigens/metabolism , Neuromyelitis Optica/complications , Optic Nerve/pathology , T-Lymphocytes/metabolism , Animals , Humans , Mice , Paralysis
10.
Neurol Neuroimmunol Neuroinflamm ; 4(3): e308, 2017 May.
Article in English | MEDLINE | ID: mdl-28271078

ABSTRACT

OBJECTIVE: To determine the average age of MS onset vs the age at which Epstein-Barr infection has previously occurred and stratify this analysis by sex and the blood level of Epstein-Barr nuclear antigen 1 (EBNA1) antibody. METHODS: Using infectious mononucleosis (IM) as a temporal marker in data from the Swedish epidemiologic investigation of MS, 259 adult IM/MS cases were identified and then augmented to account for "missing" childhood data so that the average age of MS onset could be determined for cases binned by age of IM (as stratified by sex and EBNA1 titer level). RESULTS: Mean age of IM vs mean age of MS reveals a positive time correlation for all IM ages (from ∼5 to ∼30 years), with IM-to-MS delay decreasing with increased age. When bifurcated by sex or EBNA1 blood titer levels, males and high-titer subpopulations show even stronger positive time correlation, while females and low-titer populations show negative time correlation in early childhood (long IM/MS delay). The correlation becomes positive in females beyond puberty. CONCLUSIONS: IM/MS time correlation implies causality if IM is time random. Alternative confounding models seem implausible, in light of constraints imposed by time-invariant delay observed here. Childhood infection with Epstein-Barr virus (EBV) in females and/or those genetically prone to low EBNA1 blood titers will develop MS slowly. Males and/or high EBNA1-prone develop MS more rapidly following IM infection at all ages. For all, postpubescent EBV infection is critical for the initiation and rapid development of MS.

11.
Proc Natl Acad Sci U S A ; 113(51): 14781-14786, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27940915

ABSTRACT

Aquaporin-4 (AQP4)-specific T cells are expanded in neuromyelitis optica (NMO) patients and exhibit Th17 polarization. However, their pathogenic role in CNS autoimmune inflammatory disease is unclear. Although multiple AQP4 T-cell epitopes have been identified in WT C57BL/6 mice, we observed that neither immunization with those determinants nor transfer of donor T cells targeting them caused CNS autoimmune disease in recipient mice. In contrast, robust proliferation was observed following immunization of AQP4-deficient (AQP4-/-) mice with AQP4 peptide (p) 135-153 or p201-220, peptides predicted to contain I-Ab-restricted T-cell epitopes but not identified in WT mice. In comparison with WT mice, AQP4-/- mice used unique T-cell receptor repertoires for recognition of these two AQP4 epitopes. Donor T cells specific for either determinant from AQP4-/-, but not WT, mice induced paralysis in recipient WT and B-cell-deficient mice. AQP4-specific Th17-polarized cells induced more severe disease than Th1-polarized cells. Clinical signs were associated with opticospinal infiltrates of T cells and monocytes. Fluorescent-labeled donor T cells were detected in CNS lesions. Visual system involvement was evident by changes in optical coherence tomography. Fine mapping of AQP4 p201-220 and p135-153 epitopes identified peptides within p201-220 but not p135-153, which induced clinical disease in 40% of WT mice by direct immunization. Our results provide a foundation to evaluate how AQP4-specific T cells contribute to AQP4-targeted CNS autoimmunity (ATCA) and suggest that pathogenic AQP4-specific T-cell responses are normally restrained by central tolerance, which may be relevant to understanding development of AQP4-reactive T cells in NMO.


Subject(s)
Aquaporin 4/genetics , Aquaporin 4/metabolism , Autoantigens/chemistry , Epitopes, T-Lymphocyte/immunology , Neuromyelitis Optica/metabolism , T-Lymphocytes/cytology , Animals , Autoantibodies/immunology , Autoimmune Diseases/metabolism , Cell Proliferation , Central Nervous System , Epitope Mapping , Female , Flow Cytometry , Immune Tolerance , Immunoglobulin G/immunology , Inflammation , Leukocytes/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Spleen/cytology , Th17 Cells/cytology
12.
J Diabetes Res ; 2016: 9083103, 2016.
Article in English | MEDLINE | ID: mdl-27069933

ABSTRACT

Type 1 diabetes is an autoimmune disease in which insulin-producing pancreatic islet ß cells are the target of self-reactive B and T cells. T cells reactive with epitopes derived from insulin and/or IGRP are critical for the initiation and maintenance of disease, but T cells reactive with other islet antigens likely have an essential role in disease progression. We sought to identify candidate CD8(+) T cell epitopes that are pathogenic in type 1 diabetes. Proteins that elicit autoantibodies in human type 1 diabetes were analyzed by predictive algorithms for candidate epitopes. Using several different tolerizing regimes using synthetic peptides, two new predicted tolerogenic CD8(+) T cell epitopes were identified in the murine homolog of the major human islet autoantigen zinc transporter ZnT8 (aa 158-166 and 282-290) and one in a non-ß cell protein, dopamine ß-hydroxylase (aa 233-241). Tolerizing vaccination of NOD mice with a cDNA plasmid expressing full-length proinsulin prevented diabetes, whereas plasmids encoding ZnT8 and DßH did not. However, tolerizing vaccination of NOD mice with the proinsulin plasmid in combination with plasmids expressing ZnT8 and DßH decreased insulitis and enhanced prevention of disease compared to vaccination with the plasmid encoding proinsulin alone.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cation Transport Proteins/immunology , Diabetes Mellitus, Type 1/therapy , Dopamine beta-Hydroxylase/immunology , Epitopes, T-Lymphocyte , Genetic Therapy/methods , Immune Tolerance , Insulin-Secreting Cells/immunology , Proinsulin/immunology , Vaccination , Animals , Autoantibodies/immunology , Cation Transport Proteins/genetics , Cells, Cultured , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Disease Models, Animal , Dopamine beta-Hydroxylase/genetics , Female , Humans , Insulin-Secreting Cells/pathology , Lymphocyte Activation , Mice, Inbred NOD , Proinsulin/genetics , Time Factors , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Zinc Transporter 8
13.
Proc Natl Acad Sci U S A ; 113(6): 1600-5, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26811456

ABSTRACT

Bile acids are ligands for the nuclear hormone receptor, farnesoid X receptor (FXR). The bile acid-FXR interaction regulates bile acid synthesis, transport, and cholesterol metabolism. Recently, bile acid-FXR regulation has been reported to play an integral role in both hepatic and intestinal inflammation, and in atherosclerosis. In this study, we found that FXR knockout mice had more disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Obeticholic acid (6α-ethyl-chenodeoxycholic acid, 6-ECDCA), a synthetic FXR agonist, is an orally available drug that is currently in clinical trials for the treatment of inflammatory diseases such as alcoholic hepatitis, nonalcoholic steatohepatitis, and primary biliary cirrhosis. When we treated mice exhibiting established EAE with 6-ECDCA, or the natural FXR ligand chenodeoxycholic acid (CDCA), clinical disease was ameliorated by (i) suppressing lymphocyte activation and proinflammatory cytokine production; (ii) reducing CD4(+) T cells and CD19(+) B cell populations and their expression of negative checkpoint regulators programmed cell death protein 1 (PD1), programmed death-ligand 1 (PD-L1), and B and T lymphocyte attenuator (BTLA); (iii) increasing CD8(+) T cells and PD1, PDl-1, and BTLA expression; and (iv) reducing VLA-4 expression in both the T- and B-cell populations. Moreover, adoptive transfer of 6-ECDCA- or CDCA-treated donor cells failed to transfer disease in naive recipients. Thus, we show that FXR functions as a negative regulator in neuroinflammation and we highlight that FXR agonists represent a potential previously unidentified therapy for MS.


Subject(s)
Bile Acids and Salts/metabolism , Chenodeoxycholic Acid/analogs & derivatives , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Receptors, Cytoplasmic and Nuclear/agonists , Administration, Oral , Animals , Chenodeoxycholic Acid/administration & dosage , Chenodeoxycholic Acid/chemistry , Chenodeoxycholic Acid/pharmacology , Chenodeoxycholic Acid/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/blood , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Injections, Intraperitoneal , Ligands , Lymphocyte Activation/drug effects , Mice, Knockout , Receptors, Cytoplasmic and Nuclear/metabolism
14.
J Exp Med ; 211(2): 189-98, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24493798

ABSTRACT

Aberrant microglial responses contribute to neuroinflammation in many neurodegenerative diseases, but no current therapies target pathogenic microglia. We discovered unexpectedly that the antiviral drug ganciclovir (GCV) inhibits the proliferation of microglia in experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis (MS), as well as in kainic acid-induced excitotoxicity. In EAE, GCV largely prevented infiltration of T lymphocytes into the central nervous system (CNS) and drastically reduced disease incidence and severity when delivered before the onset of disease. In contrast, GCV treatment had minimal effects on peripheral leukocyte distribution in EAE and did not inhibit generation of antibodies after immunization with ovalbumin. Additionally, a radiolabeled analogue of penciclovir, [(18)F]FHBG, which is similar in structure to GCV, was retained in areas of CNS inflammation in EAE, but not in naive control mice, consistent with the observed therapeutic effects. Our experiments suggest GCV may have beneficial effects in the CNS beyond its antiviral properties.


Subject(s)
Antiviral Agents/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Ganciclovir/pharmacology , Microglia/drug effects , Animals , Antiviral Agents/pharmacokinetics , Brain/drug effects , Brain/immunology , Brain/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Cell Proliferation/drug effects , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Ganciclovir/pharmacokinetics , Immunosuppressive Agents/pharmacology , Mice , Mice, Inbred C57BL , Microglia/pathology , Ovalbumin/immunology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology
15.
Nat Immunol ; 14(11): 1166-72, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24076635

ABSTRACT

Sphingosine 1-phosphate (S1P) signaling regulates lymphocyte egress from lymphoid organs into systemic circulation. The sphingosine phosphate receptor 1 (S1P1) agonist FTY-720 (Gilenya) arrests immune trafficking and prevents multiple sclerosis (MS) relapses. However, alternative mechanisms of S1P-S1P1 signaling have been reported. Phosphoproteomic analysis of MS brain lesions revealed S1P1 phosphorylation on S351, a residue crucial for receptor internalization. Mutant mice harboring an S1pr1 gene encoding phosphorylation-deficient receptors (S1P1(S5A)) developed severe experimental autoimmune encephalomyelitis (EAE) due to autoimmunity mediated by interleukin 17 (IL-17)-producing helper T cells (TH17 cells) in the peripheral immune and nervous system. S1P1 directly activated the Jak-STAT3 signal-transduction pathway via IL-6. Impaired S1P1 phosphorylation enhances TH17 polarization and exacerbates autoimmune neuroinflammation. These mechanisms may be pathogenic in MS.


Subject(s)
Brain/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Interleukin-17/metabolism , Lysophospholipids/metabolism , Multiple Sclerosis/metabolism , Receptors, Lysosphingolipid/metabolism , Signal Transduction/immunology , Sphingosine/analogs & derivatives , Animals , Autopsy , Brain/immunology , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Gene Expression Regulation , Humans , Inflammation , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Interleukin-6/metabolism , Janus Kinases/genetics , Janus Kinases/immunology , Janus Kinases/metabolism , Lysophospholipids/immunology , Mice , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Phosphorylation , Receptors, Lysosphingolipid/genetics , Receptors, Lysosphingolipid/immunology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , STAT3 Transcription Factor/metabolism , Sphingosine/immunology , Sphingosine/metabolism , Th17 Cells
16.
Nat Cell Biol ; 15(6): 614-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23644469

ABSTRACT

Oligodendrocytes-the myelin-forming cells of the central nervous system-can be regenerated during adulthood. In adults, new oligodendrocytes originate from oligodendrocyte progenitor cells (OPCs), but also from neural stem cells (NSCs). Although several factors supporting oligodendrocyte production have been characterized, the mechanisms underlying the generation of adult oligodendrocytes are largely unknown. Here we show that genetic inactivation of SIRT1, a protein deacetylase implicated in energy metabolism, increases the production of new OPCs in the adult mouse brain, in part by acting in NSCs. New OPCs produced following SIRT1 inactivation differentiate normally, generating fully myelinating oligodendrocytes. Remarkably, SIRT1 inactivation ameliorates remyelination and delays paralysis in mouse models of demyelinating injuries. SIRT1 inactivation leads to the upregulation of genes involved in cell metabolism and growth factor signalling, in particular PDGF receptor α (PDGFRα). Oligodendrocyte expansion following SIRT1 inactivation is mediated at least in part by AKT and p38 MAPK-signalling molecules downstream of PDGFRα. The identification of drug-targetable enzymes that regulate oligodendrocyte regeneration in adults could facilitate the development of therapies for demyelinating injuries and diseases, such as multiple sclerosis.


Subject(s)
Neural Stem Cells/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Receptor, Platelet-Derived Growth Factor alpha/biosynthesis , Sirtuin 1/antagonists & inhibitors , Animals , Brain/cytology , Brain/metabolism , Cell Differentiation , Cell Lineage , Central Nervous System/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Sheath/metabolism , Neural Stem Cells/cytology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Mult Scler ; 19(1): 5-14, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23303879

ABSTRACT

Four questions were posed about multiple sclerosis (MS) at the 2011 Charcot Lecture, Oct. 22, 2011. 1. The Male/Female Disparity: Why are women developing MS so much more frequently than men? 2. Neuronal and Glial Protection: Are there guardian molecules that protect the nervous system in MS? 3. Predictive Medicine: With all the approved drugs, how can we rationally decide which one to use? 4. The Precise Scalpel vs. the Big Hammer for Therapy: Is antigen-specific therapy for demyelinating disease possible? To emphasize how our views on the pathogenesis and treatment of MS are evolving, and given the location of the talk in Amsterdam, Piet Mondrian's progressive interpretations of trees serve as a heuristic.


Subject(s)
Multiple Sclerosis , Humans
18.
Sci Transl Med ; 4(137): 137ra73, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22674551

ABSTRACT

Lipids constitute 70% of the myelin sheath, and autoantibodies against lipids may contribute to the demyelination that characterizes multiple sclerosis (MS). We used lipid antigen microarrays and lipid mass spectrometry to identify bona fide lipid targets of the autoimmune response in MS brain, and an animal model of MS to explore the role of the identified lipids in autoimmune demyelination. We found that autoantibodies in MS target a phosphate group in phosphatidylserine and oxidized phosphatidylcholine derivatives. Administration of these lipids ameliorated experimental autoimmune encephalomyelitis by suppressing activation and inducing apoptosis of autoreactive T cells, effects mediated by the lipids' saturated fatty acid side chains. Thus, phospholipids represent a natural anti-inflammatory class of compounds that have potential as therapeutics for MS.


Subject(s)
Fatty Acids/metabolism , Myelin Sheath/metabolism , Animals , Autoantibodies/therapeutic use , Blotting, Western , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Flow Cytometry , In Situ Nick-End Labeling , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Phospholipids/immunology , Phospholipids/metabolism
19.
J Exp Med ; 209(7): 1325-34, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22734047

ABSTRACT

Comparison of transcriptomic and proteomic data from pathologically similar multiple sclerosis (MS) lesions reveals down-regulation of CD47 at the messenger RNA level and low abundance at the protein level. Immunohistochemical studies demonstrate that CD47 is expressed in normal myelin and in foamy macrophages and reactive astrocytes within active MS lesions. We demonstrate that CD47(-/-) mice are refractory to experimental autoimmune encephalomyelitis (EAE), primarily as the result of failure of immune cell activation after immunization with myelin antigen. In contrast, blocking with a monoclonal antibody against CD47 in mice at the peak of paralysis worsens EAE severity and enhances immune activation in the peripheral immune system. In vitro assays demonstrate that blocking CD47 also promotes phagocytosis of myelin and that this effect is dependent on signal regulatory protein α (SIRP-α). Immune regulation and phagocytosis are mechanisms for CD47 signaling in autoimmune neuroinflammation. Depending on the cell type, location, and disease stage, CD47 has Janus-like roles, with opposing effects on EAE pathogenesis.


Subject(s)
Autoimmune Diseases/genetics , CD47 Antigen/genetics , Encephalitis/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Astrocytes/immunology , Astrocytes/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , CD47 Antigen/immunology , CD47 Antigen/metabolism , Disease Resistance/genetics , Disease Resistance/immunology , Down-Regulation , Encephalitis/immunology , Encephalitis/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Flow Cytometry , Foam Cells/immunology , Foam Cells/metabolism , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Myelin Sheath/immunology , Myelin Sheath/metabolism , Oligonucleotide Array Sequence Analysis , Proteomics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome
20.
Curr Trends Immunol ; 13: 1-12, 2012.
Article in English | MEDLINE | ID: mdl-24795508

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is a commonly-used animal model of the human demyelinating disease, multiple sclerosis (MS). Similar to MS, EAE is under genetic control in that certain mouse strains are susceptible to disease induction with myelin antigens, while other strains are resistant. In the past, major efforts studying EAE tended to focus on the mechanism of disease susceptibility pertaining to antigen specificities, disease progression and related cytokines. The basis of EAE resistance, on the other hand, had received relatively little attention. It is our contention that EAE resistance is a tightly regulated process and many lessons can be learned from studying its mechanisms. Initially, this laboratory showed that resistance to EAE induced by MBP in B6 mice and many other strains with different H-2 haplotypes could be reversed in an adoptive transfer system by challenging the recipients with MBP-CFA. The disease developed in these mice was very similar to that induced in EAE susceptible mouse strains without the antigenic challenge. This approach of reversing EAE resistance was confirmed by several other laboratories. It was also demonstrated definitively that EAE was mediated by the donor T cells and not by host T cells. Indeed, a "resistant" host environment did not affect the outcome of disease development. The antigenic challenge appeared to induce an anamnestic response in the donor T cells, as the antigen dose used could be as low as only 5µg per mouse. Significantly, the period between adoptive cell transfer and antigenic challenge could be as long as over one year, again indicating that the donor cells persisted in the host for a long period of time. Recently, it has been suggested that EAE resistance can be due to the activities of regulatory T cells (Tregs). Depletion of Tregs with anti-CD25 antibodies prior to immunization with PLP139-151 rendered 30% of resistant B10.S mice to develop EAE. These results were confirmed in SJL.B mice responding to MBP but not in B6 mice responding to the same antigen, suggesting that regulation might vary among EAE resistant mouse strains. In addition, it is noted that while B6 and SJL.B mice are resistant to EAE induction with MBP, these mice are susceptible to disease induction when immunized with MOG, suggesting that EAE susceptibility verses resistance is antigen dependent. This unique mouse model, coupled with advance technologies such as peptide/IA tetramers and microarrays, should provide a powerful tool for further elucidation of the basic mechanisms of EAE resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...